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Abstract

Background

Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a

global health priority. Although several candidate drugs have been identified through in vitro

and in vivo models, consistent and compelling evidence from clinical studies is limited. The

lack of evidence from clinical trials may stem in part from the imperfect design of the trials.

We investigated how clinical trials for antivirals need to be designed, especially focusing on

the sample size in randomized controlled trials.

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003660 July 6, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Iwanami S, Ejima K, Kim KS, Noshita K,

Fujita Y, Miyazaki T, et al. (2021) Detection of

significant antiviral drug effects on COVID-19 with

reasonable sample sizes in randomized controlled

trials: A modeling study. PLoS Med 18(7):

e1003660. https://doi.org/10.1371/journal.

pmed.1003660

Academic Editor: Mirjam E. E. Kretzschmar,

Universitair Medisch Centrum Utrecht,

NETHERLANDS

Received: June 29, 2020

Accepted: May 18, 2021

Published: July 6, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pmed.1003660

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

https://orcid.org/0000-0003-1474-5348
https://orcid.org/0000-0002-1185-3987
https://orcid.org/0000-0001-6626-316X
https://orcid.org/0000-0002-9510-5897
https://orcid.org/0000-0002-1720-3942
https://orcid.org/0000-0002-0962-5758
https://orcid.org/0000-0001-8942-0869
https://orcid.org/0000-0002-5340-6851
https://orcid.org/0000-0002-3277-9552
https://orcid.org/0000-0001-5124-1419
https://orcid.org/0000-0002-4602-9816
https://orcid.org/0000-0001-8545-5212
https://orcid.org/0000-0002-2455-0002
https://orcid.org/0000-0002-1780-350X
https://doi.org/10.1371/journal.pmed.1003660
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003660&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1371/journal.pmed.1003660
https://doi.org/10.1371/journal.pmed.1003660
https://doi.org/10.1371/journal.pmed.1003660
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Methods and findings

A modeling study was conducted to help understand the reasons behind inconsistent clinical

trial findings and to design better clinical trials. We first analyzed longitudinal viral load data

for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral

treatment by use of a within-host virus dynamics model. The fitted viral load was categorized

into 3 different groups by a clustering approach. Comparison of the estimated parameters

showed that the 3 distinct groups were characterized by different virus decay rates (p-value

< 0.001). The mean decay rates were 1.17 d−1 (95% CI: 1.06 to 1.27 d−1), 0.777 d−1 (0.716

to 0.838 d−1), and 0.450 d−1 (0.378 to 0.522 d−1) for the 3 groups, respectively. Such hetero-

geneity in virus dynamics could be a confounding variable if it is associated with treatment

allocation in compassionate use programs (i.e., observational studies).

Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An

antiviral effect causing a 95% to 99% reduction in viral replication was added to the model.

To be realistic, we assumed that randomization and treatment are initiated with some time

lag after symptom onset. Using the duration of virus shedding as an outcome, the sample

size to detect a statistically significant mean difference between the treatment and placebo

groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%,

respectively) per group if all patients are enrolled regardless of timing of randomization.

The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%,

respectively) if only patients who are treated within 1 day of symptom onset are enrolled.

We confirmed the sample size was similarly reduced when using cumulative viral load in log

scale as an outcome.

We used a conventional virus dynamics model, which may not fully reflect the detailed

mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms

of both parameter settings and model structure, which would yield more reliable sample size

calculation.

Conclusions

In this study, we found that estimated association in observational studies can be biased

due to large heterogeneity in viral dynamics among infected individuals, and statistically sig-

nificant effect in randomized controlled trials may be difficult to be detected due to small

sample size. The sample size can be dramatically reduced by recruiting patients immedi-

ately after developing symptoms. We believe this is the first study investigated the study

design of clinical trials for antiviral treatment using the viral dynamics model.

Author summary

Why was this study done?

• Most clinical studies of antiviral drugs for Severe Acute Respiratory Syndrome Corona-

virus 2 (SARS-CoV-2) have failed to observe a statistically significant effect, which may

be due to poor designs of clinical trials.
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• It is not well studied how clinical trials for antiviral drugs should be designed. Especially,

sample size calculation methodology needs to be established.

What did the researchers do and find?

• SARS-CoV-2 virus dynamics was quantified by fitting a virus dynamic model to longi-

tudinal viral load data.

• Cluster analysis of the fitted viral loads revealed 3 distinct groups characterized by dif-

ferent virus decay rates, which could be a confounding factor in observational studies.

• Simulation mimicking randomized controlled trials demonstrated that sample size

would be unreasonably large (>11,000 per group) if the timing of treatment initiation

is not considered. The sample size is significantly reduced by including only patients

enrolled early after symptom onset.

What do these findings mean?

• Randomized controlled trials for antiviral drugs should recruit patients as early as possi-

ble after symptom onset or set inclusion criteria based on the time since symptom onset

to observe statistically significant results.

• More precise models reflecting the features of SARS-CoV-2 infection may provide more

reliable sample size estimates.

Introduction

Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a

global health priority. Along with the development of new antiviral drugs, repurposing of

existing drugs for COVID-19 treatment has accelerated [1–9]. Some antiviral drugs have

shown high efficacy against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

in both in vitro and in vivo models [10,11]. A number of clinical studies such as compassionate

use programs and clinical trials have been conducted or are underway to test the efficacy of

Food and Drug Administration (FDA)-approved drugs, such as lopinavir/ritonavir, chloro-

quine, favipiravir, and remdesivir [12–17]. Different drugs have different modes of action, but

the majority of the candidate antiviral drugs for SARS-CoV-2 are expected to block virus repli-

cation. Lopinavir/ritonavir are HIV protease inhibitors, and remdesivir was originally devel-

oped to mitigate the replication of hepatitis C viruses (and considered potentially useful for

Ebola virus). Other nucleoside analogues [18,19] are also candidates for mitigating SARS-

CoV-2 replication within the host.

However, the results from those clinical studies were often nonsignificant, and, sometimes,

inconsistent. This may be in part attributable to a nonrigorous study design, which masks the

true efficacy of antivirals [20]. Clinical trial design usually takes months to formulate the study

protocol (i.e., dose of drugs, clinical outcomes to be evaluated, sample size, and assessment of

safety) and requires collecting preliminary data. However, the urgent need to find effective

antiviral treatments for COVID-19 may have led to rushed studies.

In compassionate use programs (i.e., observational studies), whether and when antiviral

treatment is initiated is determined by health practitioners along with patients and their next
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of kin. By the very nature of these studies, potential confounders, such as the patients’ clinical

characteristics and preexisting conditions, influence both treatment–control allocation and

clinical outcomes. As a consequence, conclusions from the program could be biased even

when all observable confounders are addressed in the analysis [21]. However, such programs

are widely used for hypothesis building. Contrary to compassionate use programs, clinical tri-

als, particularly randomized controlled trials, are considered robust against confounder effects

and the most reliable study design. S1 Table summarizes the current major clinical studies for

antiviral treatment of SARS-CoV-2 (as of May 22, 2020). Indeed, the results from these clinical

studies have yielded null or inconsistent findings. For example, compassionate use of hydroxy-

chloroquine was reported in many articles, but the findings were not consistent. Gautret and

colleagues reported significant antiviral efficacy [22], whereas Geleris and colleagues could not

replicate the result [23].

To help understand the mechanism behind the inconsistent findings, we parametrized the

virus dynamics model that we previously developed [24–26] by using longitudinal viral load

data extracted from clinical studies and further ran simulations by adding antiviral effects to

the model. Here, we demonstrate that at least 2 factors can mask the effects of antiviral drugs

in clinical studies for COVID-19: (1) heterogeneity in virus dynamics among patients; and (2)

late timing of treatment initiation. We also propose a novel approach, to the best of our knowl-

edge, to calculating the sample size (i.e., the required or minimum sample size needed to infer

whether the antiviral drug is effective assuming the drug is truly effective) accounting for

within-host virus dynamics.

Methods

Study data

The longitudinal viral load data examined in our study were extracted from the published

studies of SARS-CoV-2: Young and colleagues [27], Zou and colleagues [28], Kim and col-

leagues [29], and Wölfel and colleagues [30]. For consistency, the viral load data measured

from upper respiratory specimens were used. We excluded patients who received antiviral

treatment and for whom data were measured on only 1 or 2 days (because 1 or 2 data points

are not enough to estimate parameters). We converted cycle threshold (Ct) values to viral

RNA copy number values, where these quantities are inversely proportional to each other [28].

In total, we use the data from 30 patients. To extract the data from the images in those papers,

we used the software DataThief III (version 1.5, Bas Tummers, www.datathief.org).

Mathematical model for virus dynamics without and with antiviral

treatment

SARS-CoV-2 virus dynamics without antiviral treatment is described by a mathematical

model previously proposed in [24,31,32]:

df ðtÞ
dt
¼ � bf ðtÞVðtÞ; ð1Þ

dVðtÞ
dt
¼ gf ðtÞVðtÞ � dVðtÞ; ð2Þ

where f(t) is the relative fraction of uninfected target cells at time t to those at time 0, and V(t)
is the amount of virus at time t, respectively. Both f(t) and V(t) are in linear scale. The parame-

ters β, γ, and δ represent the rate constant for virus infection, the maximum rate constant for

viral replication, and the per capita death rate of virus-producing cells, respectively. Note that
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δ implicitly includes the effects of the immune response in killing infected cells, e.g., by cyto-

toxic T lymphocytes. All viral load data were fit using a nonlinear mixed-effect modeling

approach, which estimates population parameters while accounting for interindividual varia-

tion in virus dynamics (see the next section for details). The day from symptom onset was

used as a timescale (i.e., t = 0 at symptom onset).

The virus dynamic model under antiviral treatment (which we assume blocks virus replica-

tion) initiated at t� days after symptom onset can be described based on the above model as fol-

lows:

df ðtÞ
dt
¼ � bf ðtÞVðtÞ; ð3Þ

dVðtÞ
dt
¼ ð1 � ε�HðtÞÞgf ðtÞVðtÞ � dVðtÞ; ð4Þ

where H(t) is a Heaviside function indicating off and on treatment, defined as H(t) = 0 if t< t�

(i.e., before treatment initiation); otherwise, H(t) = 1. ε is the fraction of virus production

inhibited by the therapy (0 < ε� 1). ε = 1 when the virus replication from the infected cells is

totally inhibited (i.e., the antiviral effect is 100%). We evaluated the expected antiviral effect of

the treatment on the outcomes (duration of virus shedding and cumulative viral load mea-

sured on a log scale) under different inhibition rates (ε) and initiation times (t�). The effect of

drugs that blocking de novo infection can be modeled by inhibiting both the βf(t)V(t) and γf(t)
V(t) terms, and a drug promoting cytotoxicity can be modeled by increasing δV(t), as we dis-

cussed in [31]. Unfortunately, because sufficient viral load data under antiviral drug therapy

are not available yet, the antiviral effect (ε) of drugs in preclinical development and in clinical

trials are still unknown. Therefore, we chose to examine hypothetical examples of drugs with

50%, 95%, or 99% efficacy. We used 50% and 99% efficacy to illustrate the difference in viral

dynamics between patients with and without treatment (see section “SARS-CoV-2 virus

dynamics and antiviral effect”) and 95% and 99% efficacy in “Simulation mimicking a ran-

domized controlled trial for antiviral drugs.” Since clinical trials are performed only for drugs

with sufficient efficacy (i.e., there is no reason to test drugs with weak efficacy), we believe this

value range is reasonable.

Parameter estimation with the nonlinear mixed-effects model

A nonlinear mixed-effects model was used to fit the viral dynamic model given by Eqs 1 and 2

to the longitudinal viral load data. The model included both a fixed effect (constant across

patients) and a random effect (different between patients) in each parameter. Specifically, the

parameter for patient k, Wk ð¼ W� epkÞ is represented as a product of ϑ (a fixed effect) and epk
(a random effect). πk follows the normal distribution with mean 0 and standard deviation O.

Fixed effects and random effects were estimated using the stochastic approximation expecta-

tion–maximization algorithm and empirical Bayes method, respectively. The conditional dis-

tribution of the vector of individual parameters was estimated for each patient using the

Metropolis–Hastings algorithm and was used to calculate the 95% predictive interval of the

viral load curve in Fig 1. The mixed-model approach is becoming more common in longitudi-

nal viral load data analysis [26,33], because it can capture the heterogeneity in virus dynamics,

and parameter estimation is feasible even for those with limited data. Fitting was performed

using MONOLIX 2019R2 (www.lixoft.com) [34]. To account for data points under the detec-

tion limit (see the red dots in S1 Fig), the likelihood function reflected the likelihood that the
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data are in the censoring interval (0 to the detection limit) given parameter values with a right-

truncated Gaussian distribution [35].

Clustering of individual viral load dynamics

As observed in Fig 1, the virus dynamics has huge heterogeneity between patients. For some

patients, viral load declines rapidly, but for others, it persists for almost 1 month. It is ideal if

the longitudinal viral load data can be directly compared between patients; however, the data

collection intervals are not the same between patients, and the data under the detection limit

are not quantifiable. Therefore, we used the fitted viral load every day since symptom onset,

which is available from the best fit curve, for comparison. The fitted daily viral load values of

each patient were rescaled by their maximum values and log-transformed. Then, hierarchical

clustering was performed on the rescaled-transformed fitted daily viral load using the linkage

function with Ward method [36] in SciPy [37]. Once multiple clusters are identified, esti-

mated parameter distributions among the clusters were compared by ANOVA to assess the

source of the difference in virus dynamics. Pairwise comparison was subsequently performed

using Student t test. The p-values of the pairwise Student t test were adjusted by the Bonfer-

roni correction.

Simulation mimicking a randomized controlled trial for antiviral drugs

We mimicked randomized controlled trials using the model including the effects of an antivi-

ral drug. The allocation ratio is assumed as 1:1 (control:treatment). A total of 20,000 parameter

sets were randomly sampled from the estimated distributions of individual parameters. A lon-

gitudinal viral load time series for each individual was created based on their chosen parameter

set. Note that for those in the treatment group, the antiviral effect (ε) was assumed to be con-

stant. For sensitivity analysis, we used 2 different values of ε, 95% and 99%. To obtain a realis-

tic simulation, treatment was initiated following the distribution of time from symptom onset

to hospitalization obtained from Bi and colleagues: lognorm (1.23, 0.79) (the mean is 4.64

days) [38], where the treatment was assumed to be initiated immediately after hospitalization.

We also used a truncated distribution to mimic the randomized controlled trials including

only patients recruited and treated early (within 0.5, 1, 2, 3, and 4 days after symptom onset).

We used 2 quantities as outcome measures: the duration of virus shedding from the onset of

symptoms until the time the virus becomes undetectable (TD) and the log10-transformed cumula-

tive viral load, i.e., the area under the curve (AUC) of viral load (log
10
ðAUCÞ : log

10

Ð TD
0

VðsÞds).
Many clinical studies have used the duration of viral shedding as a primary outcome (see S1

Table), and previous theoretical studies have quantified the AUC. Both of the outcomes we use

here are expected to be reduced under effective antiviral treatment.

From our simulations, we obtained 10,000 outcomes for each group (duration of virus

shedding and cumulative viral load). The sample size was computed for different values of ε
using the 2-tailed Welch t test with significance level and power as 0.05 and 80%, respectively.

Results

Heterogeneity in SARS-CoV-2 virus dynamics

SARS-CoV-2 viral load data were analyzed using a mathematical model to quantify the hetero-

geneity in virus dynamics among patients and to examine the source of the heterogeneity.

Longitudinal viral load data from 30 patients from different countries were fitted simulta-

neously using a nonlinear mixed-effects modeling approach. With the estimated parameters

for each patient (listed in S2 Table), viral loads since the time of symptom onset were fully
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reconstructed even when the viral load was missed or under the detection limit (Figs 1 and

2A). This reconstruction allowed us to quantitatively compare viral load dynamics between

patients. The viral loads over time, which were reconstructed based on the mathematical

model with the estimated parameters, were analyzed with a clustering approach (Fig 2B) and

placed into 3 groups. Patient “China O” was detected as an outlier and was excluded from fur-

ther analysis.

Fig 1. Observed and fitted viral load data for individual patients. Viral loads were measured using nasal swabs (China), pharyngeal swabs (Germany),

nasopharyngeal swabs (Singapore and Korea), and oropharyngeal swab (Korea) for hospitalized SARS-CoV-2–infected patients. Note that the detection

limits of the PCR assay for SARS-CoV-2 were 68.0 copies/ml (Singapore and Korea), 15.3 copies/ml (China), and 33.3 copies/ml (Germany), respectively,

and are shown as dotted horizontal lines. The closed dots and curves correspond to the observed and the estimated viral load for each patient using their

individual parameters given in S2 Table, respectively. Shaded regions correspond to 95% predictive intervals. Different colors of the dots and the lines (light

blue, black, and pink) correspond to the 3 different types of patients characterized by rapid, medium, and slow viral load decay, respectively. The red dots

represent the data at or under the detection limit regardless of the group. Patient IDs are the same as in the original papers if available. The underlying data

for this figure can be found in S1 Data. SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pmed.1003660.g001
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To understand the source of the difference in virus dynamics between groups, we tested the

differences in the estimated parameters (i.e., β, γ, δ, and V(0)) among the groups. Statistically

significant between-group differences were found in the maximum rate constant for viral rep-

lication, γ, and in the death rate of virus-producing cells per day, δ (S1 Fig). The differences in

γ are related to the growth of viral load (a larger γ indicates more rapid growth); however, the

difference in γ between groups was sufficiently small that its influence on virus dynamics espe-

cially after the viral load peak (or symptom onset) is negligible. The difference in δmanifests

in the speed of viral load decay, i.e., a small value of δ corresponds to a slow decay in viral load

Fig 2. Characterizing and clustering COVID-19 patients using viral load data. (A) Schematic illustration for data fitting with a virus dynamics model.

Longitudinal SARS-CoV-2 RNA load data (i.e., clinical data) were extracted from published papers. The data were analyzed by the mathematical model,

and then virus dynamics parameters were estimated for each patient (i.e., phenotyping). Daily viral load since symptom onset for each patient was

simulated by running the model with the estimated parameters. (B) Clustering patients using daily viral load. Daily viral load obtained through simulation

was used for clustering of the 30 patients. In the dendrogram, the height from the bottom to the point where 2 or more patients are joined indicates the

distance (i.e., dissimilarity) between patients. For example, “Singapore 11” and “Germany 2” are very close, and those are far from “Singapore 6.” As a

result, 3 different patient groups were identified, and “China O” was detected as an outlier. The heatmap next to the dendrogram (“Virus dynamics

parameters”) shows the estimated parameters and initial condition (γ, β, V(0), δ) for each patient. Light blue and pink correspond to high and low values,

respectively. Statistically significant between-group differences were found in the maximum rate constant for viral replication, γ (ANOVA p-value:

3.61 × 10−3), and the death rate of virus-producing cells, δ (ANOVA p-value: 3.23 × 10−13); moreover, there were statistical differences between all pair

groups for δ. The death rate is highlighted by the dotted square. The right heatmap shows the daily viral load for each patient. Green and purple correspond

to high and low values, respectively. “Group 1” maintained a high viral load for a longer period compared with the other groups. The underlying data for

this figure can be found in S2 Data. COVID-19, Coronavirus Disease 2019; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pmed.1003660.g002
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(Fig 2B). Thus, we named the 3 groups as rapid, medium, and slow viral load decay groups

(Fig 3A). The mean decay rates were 1.17 d−1 (95% CI: 1.06 to 1.27 d−1), 0.777 d−1 (0.716 to

0.838 d−1), and 0.450 d−1 (0.378 to 0.522 d−1) for the 3 groups, respectively. The minimum and

maximum of the decay rates for the 3 identified groups were 0.270 d−1 to 0.616 d−1 (slow),

0.700 d−1 to 0.914 d−1 (medium), and 0.993 d−1 and 1.30 d−1 (rapid), respectively. The border

value of the decay rate between groups is defined as the mean of the highest value in the

lower group and the lowest value in the higher group. Thus, the border value of the slow and

medium groups was 0.658 d−1 [(0.616 + 0.700)/2] and that of the medium and rapid groups

was 0.953 d−1 [= (0.914 + 0.993)/2].

SARS-CoV-2 virus dynamics and antiviral effect

Using our mathematical model and the estimated parameter distribution for each patient (S3

Table), we conducted in silico experiments to determine the possible therapeutic response,

measured in terms of virus dynamics, of drug treatments blocking virus replication. Clinical

outcomes are known to be related to the timing of initiation of antiviral treatment in general,

and, especially, for influenza [31,39–42], and the antiviral effects of a treatment are depen-

dent on dose and the patients’ immune system [43,44]. Thus, we studied several different

scenarios in which we varied the time of treatment initiation (0.5 or 5 days from symptom

onset, which were before and generally after the estimated peak viral load in our dataset) and

Fig 3. Patient variability and difference in therapeutic response. (A) Viral load trajectories since symptom onset for the 3 groups (black: medium decay

group, light blue: rapid decay group, and pink: slow decay group) obtained through simulation (without antiviral treatment). (B) Viral load trajectories

since symptom onset for the 3 groups under antiviral treatment with different inhibition rates and different timing of treatment initiation. The left 3 panels

are viral load trajectories when the treatment is initiated at 0.5 days (“Early initiation”) since symptom onset. The right 3 panels are vial load trajectories

when treatment is initiated at 5 days (“Late initiation”) since symptom onset. Blue and red dotted lines correspond to the trajectories with 50% and 99%

inhibition rate, respectively. The bolded lines are the trajectory without treatment shown for comparison. The dotted horizontal lines are the D.L. D.L.,

detection limit.

https://doi.org/10.1371/journal.pmed.1003660.g003
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the inhibition rate (99% or 50%). We resampled a total of 1,000 parameter sets from the esti-

mated parameter distributions for this simulation and separated the individuals according

to the value of the viral load decay rate (i.e., rapid, δ> 0.953 d−1; medium, 0.658 d−1� δ�
0.953 d−1; or slow, δ< 0.658 d−1). We found that early initiation of antiviral treatment with a

high inhibition rate (i.e., 99%) immediately reduced the viral load after initiation (Fig 2B, S3

Fig). However, if the inhibition rate was low (i.e., 50%), the viral load kept increasing, and

the viral load decay rate after the peak was slower or equivalent to that without treatment.

This was because viral replication was not efficiently inhibited and thus it continued albeit

with a lower rate even after treatment initiation and continued long after the peak. In con-

trast, virus dynamics was not much influenced if treatment was initiated after the peak

regardless of the inhibition rate or the patient type (Fig 3B, S2 Fig), because the number of

uninfected targeted cells remaining at this stage of infection is limited. It is intriguing that a

weak antiviral effect was observed for patients with rapid decay even when the treatment was

initiated after the peak. Because the virus is removed rapidly during the course of infection

for patients with rapid decay, more uninfected cells remain compared with the other groups.

Therefore, antiviral drugs can mitigate replication of the virus even when treatment is initi-

ated after the peak to some extent. Note that these findings are not unique to SARS-CoV-2;

similar findings for virus dynamics and antiviral effects have been suggested in other infec-

tious diseases [25,45].

Observational studies for antiviral drugs cannot yield significant results

owing to heterogeneity in virus dynamics

We explored why compassionate use programs do not yield significant findings when using

the duration of virus shedding as an outcome. Duration of virus shedding is one of the most

frequently used outcomes for assessing antiviral treatment for SARS-CoV-2 infection (S1

Table) [12,13,15,45]. The distribution of the duration of virus shedding without treatment in

the different virus decay groups is shown in Fig 4A and S3A Fig. As can be expected from the

difference in viral load dynamics, the duration of virus shedding without treatment is longer

in the group with slow viral load decay: The averages in the groups with medium, rapid, and

slow decay were 12.3 (SD: 1.06), 8.86 (SD: 1.40), and 22.5 (SD: 8.15) days, respectively. As a

sensitivity analysis, we also computed and compared the cumulative viral load (AUC). We

confirmed the same trend in the cumulative viral load in log scale (S3B and S4A Figs). We fur-

ther compared the outcomes under antiviral treatment (inhibition rate was set as 50% and

99%). Regardless of viral decay rate group, we consistently observed that both outcomes were

improved by early treatment initiation (day 0.5) but not by late treatment initiation (day 5), as

illustrated in Fig 4B and S4B Fig.

If a patient possesses strong viral defenses, including immune-mediated defenses, the virus-

producing cells are removed quickly, which corresponds to a shorter duration of virus produc-

tion and rapid viral load decay. Indeed, the duration of virus shedding in respiratory samples

has been associated with disease severity [46] and differs between symptomatic and asymp-

tomatic cases [47]. Taken together, these findings suggest that both treatment allocation and

clinical outcomes in compassionate use programs are associated with severity; thus, severity is

a potential confounding variable. Further, there may be other confounding variables in the

assessment of treatment efficacy in compassionate use programs; however, controlling all of

them in the analysis is not possible. For example, heterogeneous immune responses, which are

partially represented by the death rate of infected cells in the model, can confound the infer-

ence. However, quantifying the immune response is difficult. We need to be careful when

interpreting the results from compassionate use programs.
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Randomized controlled trials need to enroll patients early after symptom

onset to observe significant antiviral effects

In contrast to observational studies, randomized controlled trials may not be influenced by

confounding variables and could provide valid inference. However, clinical trials for COVID-

19 should consider the timing of treatment initiation in the design (i.e., inclusion–exclusion

criteria), because differences in outcomes are unlikely to be observed under late treatment ini-

tiation as we demonstrated in the previous section (Fig 4B, S4B Fig).

We computed the sample size needed to observe a statistically significant difference in

outcomes with 80% power and a significance level of 0.05 assuming patients are randomly

assigned and treated (with antiviral or placebo) immediately after hospitalization with differ-

ent antiviral effect (95% and 99%) (Fig 5A) and with different inclusion and exclusion criteria

for the timing of enrollment. We primarily used the duration of virus shedding as an outcome,

but the results are qualitatively consistent for cumulative viral load as an outcome. The sample

size is strongly dependent on the criterion of the timing of enrollment, i.e., the sample size can

be reduced if patients are enrolled early after symptom onset (S4 Table). The distribution of

duration of virus shedding under the different criteria is shown in Fig 5B and 5C. If patients

are enrolled regardless of the time of treatment initiation, the sample sizes are 13,603 and

11,670 per group when the inhibition rate is 95% and 99%, respectively, which is much larger

Fig 4. Duration of virus shedding in the 3 different groups. (A) The relative density distributions of duration of virus shedding since symptom onset for

the 3 groups (light pink: medium decay group, light blue: rapid decay group, and pink: slow decay group) without treatment obtained through simulation.

(B) The relative density distributions of duration of virus shedding since symptom onset for the 3 groups under antiviral treatment with different inhibition

rates and different timing of treatment initiation. The left 3 panels are when antiviral treatment is initiated at 0.5 days (“Early initiation”) since symptom

onset. The red dotted line corresponds to the distribution with a 99% inhibition rate. The distribution without treatment is shown in the back for

comparison. The right 3 panels are when antiviral treatment is initiated at 5 days (“Late initiation”) since symptom onset. The distributions are represented

as “relative density” to reflect different proportions of the 3 groups. The underlying data for this figure can be found in S3 Data.

https://doi.org/10.1371/journal.pmed.1003660.g004
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than the empirical sample size of the randomized controlled trials of antivirals for SARS-CoV-

2 (S1 Table). This large sample size is needed given that the treatment is initiated 4.6 days after

onset of symptoms on average, which is after the viral load peak. If we enroll only the patients

treated within 1 day of the onset of symptoms, the sample size is reduced to 584 and 458 per

group when inhibition rate is 95% and 99%, respectively. Note that antiviral drugs with a

Fig 5. Simulation mimicking randomized controlled trial for anti-SARS-CoV-2. (A) Schematic illustration for the simulation mimicking randomized

controlled trials for antiviral drugs. A total of 20,000 parameter sets were sampled from the estimated parameter distributions. The parameter sets were

randomized into control (“No treatment,” 10,000 individuals in total) or treatment (“Anti-SARS-CoV-2 treatment,” 10,000 individuals in total) groups. For

the treatment group, the treatment is initiated randomly to reflect the delay of treatment initiation since symptom onset. We have also used a truncated

distribution (red area) to mimic the randomized controlled trials including only patients recruited and treated early (“Early initiation”). Then the outcomes

(duration of virus shedding and the cumulative viral load in log scale) were calculated for each patient. (B) The distributions of duration of virus shedding

for patients without and with treatment are shown in black and red curves, respectively. For antiviral treatment, a 99% inhibition rate of virus replication

was assumed. The red dotted curve is when all patients are included regardless of the timing of recruitment and treatment initiation. The red dashed curve

is the case when only patients recruited and treated within 0.5 days since symptom onset are included. (C) Means and standard deviation of the duration of

virus shedding under different inclusion criteria (not treated, included regardless of the timing of recruitment and treatment initiation, and early treatment

initiation [within 0.5, 1, 2, 3, and 4 days since symptom onset]) are shown. The underlying data for this figure can be found in S4 Data. COVID-19,

Coronavirus Disease 2019; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pmed.1003660.g005
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weaker inhibition rate will require larger sample sizes. The trend was similar when cumulative

viral load in log scale was used as an outcome (S4 Table, S4C and S4D Fig).

Timing of randomization of clinical studies of antiviral drugs for

SARS-CoV-2

To validate our findings from a practical perspective, we checked the clinical trials investigat-

ing antiviral efficacy registered in ClinicalTrials.gov. As of May 22, 2020, we identified 176

clinical trials with the search terms “antiviral” and “COVID.” Among them, 46 studies did not

investigate the efficacy of antiviral drugs (the effect of anti-inflammatory drugs were investi-

gated, for example), and 20 studies did not directly investigate the efficacy of antivirals (such

as vaccine studies and safety studies). Among the remaining 110 studies investigating antiviral

effect, including remdesivir, chloroquine, and lopinavir/ritonavir, only 17 studies (15%)

explicitly stated the time from symptom onset in the inclusion or exclusion criteria. The aver-

age time from symptom onset to randomization was 7.2 days, which our findings suggest is

too late to observe a statistically significant antiviral effect with a reasonable sample size.

Discussion

We explored the mechanism behind the inconsistent or null findings of clinical studies of the

antiviral effect of treatments for SARS-CoV-2 infection. By fitting a conventional virus dynam-

ics model to the longitudinal viral load data from patients with COVID-19 (without antiviral

treatment), we found that there is large heterogeneity in virus dynamics, as characterized by

different virus decay rates. Such heterogeneity in virus dynamics could be a confounding fac-

tor in observational studies. Subsequently, a set of randomized controlled trials was mimicked

by using a version of the model with an antiviral effect. We assumed that therapy was initiated

as soon as a participant was hospitalized with COVID-19 symptoms. We used a reported dis-

tribution of time delays from symptom onset to hospitalization in China to make the simula-

tion more realistic. When we included all patients in the trial regardless of the timing of

randomization and treatment initiation (1:1 allocation for treatment:placebo), we found that

more than 11,000 patients per group would need to be recruited. By including only patients

hospitalized within 1 day since symptom onset, the sample size is reduced to about 450 per

group. Thus, we conclude that clinical trials should consider the time of treatment initiation in

the study design.

In randomized controlled trials, the calculation of sample size has been performed directly

by assuming specific distributions for outcomes with a prespecified effect size [48]. However,

as we demonstrated, the antiviral effect is determined not only by dose and type of drug, but

also by the timing of treatment initiation and the parameters that govern the virus dynamics.

Further, the association between treatment initiation and the outcome (length of viral shed-

ding) is nonlinear; thus, our mathematical model-based approach can provide a more reliable

sample size than a conventional effect size-based approach.

We used measurements related to viral load as outcomes in this study rather than mortality.

Mortality is an important and ultimate clinical outcome at both the individual and the popula-

tion level. However, that does not undermine the value of outcomes related to viral load (such

as the duration of virus shedding), which have a different interpretation than clinical outcome.

One thing that can be captured by viral load but not by clinical outcome is potential transmis-

sibility. From a clinical viewpoint, each drug has its purpose of use. For example, immunosup-

pressive agents (e.g., dexamethasone) are expected to reduce clinical symptoms and mortality.

Meanwhile, the efficacy of antiviral drugs should be evaluated primarily by using viral load. In

addition, the major objective of therapy depends on the severity of disease. Lifesaving is the
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most important for patients with severe illness. For mild cases, physicians attempt to prevent

the condition and spread of infection from getting worse by using drugs with few adverse

effects. A primary endpoint should be determined on the basis of the objectives and goals

of clinical trials. As most COVID-19 patients have mild to moderate disease, the duration of

viral shedding would be more appropriate than mortality as a primary outcome. Indeed, many

studies have used the duration of viral shedding as an outcome (S1 Table).

Regarding the association between viral load and clinical outcomes such as mortality and

clinical scores, it has been observed in a number of studies that a high viral load at diagnosis is

associated with severe clinical outcomes [46,49,50] and increased risk of mortality [51]. The

data we used in this study do not contain clinical outcomes; thus, we cannot correlate our

results with clinical outcomes. However, assuming that the viral load at diagnosis is close to

the viral load at symptom onset, V(0), we did not find a significant difference in V(0) between

groups. The groups we identified were characterized by a difference in the death rate of virus-

producing cells that was reflected in the virus decay rate. Combining our findings with those

from the literature, disease severity might not be associated with a difference in overall viral

dynamics. For prognosis purposes, we need to better understand when and which biomarkers

including the viral load differentiate between severe and non-severe cases.

The strength and uniqueness of our approach is that we accounted for virus dynamics in

the assessment of antiviral effects and sample size calculations. As far as we know, considering

the timing of treatment initiation in a conventional approach to sample size calculation is chal-

lenging, especially because the outcome is nonlinearly dependent on the timing of treatment

initiation. Even if it is technically possible, the data including the timing of treatment initiation

would be limited or small. We used clinical data from SARS-CoV-2–infected patients for the

simulation. Thus, our numerical results are realistic and directly interpretable for drug devel-

opment for SARS-CoV-2. In other words, our approach is flexible and can be applied to other

antiviral drugs for other diseases by replacing the dataset.

There are several limitations in our approach. First, our within-host virus dynamics

model does not fully reflect the detailed physiological processes of virus replication of

SARS-CoV-2. For example, our mathematical model assumed target cells are a homogeneous

population (i.e., single-target cell compartment). The susceptibility of target cells for SARS-

CoV-2 infection is, however, dependent on expression levels of its receptor, angiotensin con-

verting enzyme 2 (ACE2) [52], and, therefore, susceptibility to infection might be heteroge-

neous (i.e., multi-target cell compartments) even in the same organ. However, the virus

dynamics of our model and that of a model with multi-target cell compartments may not dif-

fer substantially unless a large fraction of the total target cells in the modified model remain

uninfected around peak viral load. Another modeling limitation is that possible immunomo-

dulation induced by treatment was not modeled. That is, if anti-SARS-CoV-2 drugs induce

immunomodulation as bystander effects, late initiation of treatments might still have the

potential to reduce viral load, which is not reflected in our model [31]. We further compared

the results of the model we used in this study with 2 other extended models, which have been

used to describe virus dynamics of SARS-CoV-2 and other viruses, to check whether our

model is appropriate: one included the effect of interferons produced by infected cells [53]

and the other included the eclipse phase of infection [33,53]. We fit these models to the data

and used model selection theory to compare the models based on the Bayesian information

criteria (BIC) and corrected Bayesian information criteria (BICc). BIC and BICc among the

3 models were comparable. In addition, given limited data (i.e., only viral load data were

available), we believe using a minimal model is appropriate at this stage of knowledge. At

such time that further data and appropriate scientific information about infection dynamics

becomes available, more complex models may be able to capture additional details of within-
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host viral dynamics. Second, we did not use viral load data under treatment to evaluate our

model because such data were not sufficiently available. Estimating antiviral effects from

such data and using that in the sample size calculation would strengthen our approach, but

we need to wait until such data are accumulated.

Future study should include development of a similar sample size calculation framework

for different types of antiviral treatment. Although we focused on drugs inhibiting virus repli-

cation, there are different classes of drugs such as viral entry inhibitors (e.g., hydroxychloro-

quine and camostat) and immunomodulators (e.g., interferon and the related agents) [54].

Along with vaccines, developing effective antiviral drugs is urgently needed. At present,

most of the randomized controlled trials have failed to identify effective antiviral agents against

SARS-CoV-2. However, this might not be because the antiviral drugs are not effective, but

because of imperfect design of the clinical studies. The timing of treatment initiation and virus

dynamics should be accounted for in the study design (i.e., sample size and inclusion–exclu-

sion criteria). We further believe that our approach is informative for determining treatment

strategy in clinical settings.

Supporting information

S1 Fig. Estimated parameters of the mathematical model in the 3 different viral load decay

groups. Boxplots of estimates of (A) the rate constant for virus infection, β; (B) the maximum

rate constant for viral replication, γ; (C) the death rate of virus-producing cells, δ; and (D)

viral load at symptom onset, V(0), respectively. Estimated parameter distributions between the

3 groups with different viral load dynamics (slow, medium, and rapid viral load decay groups)

were compared by ANOVA. Pairwise comparison was subsequently performed using Student

t test. The p-values of the pairwise Student t test were adjusted by the Bonferroni correction.

The underlying data for this figure can be found in S2 Table.

(TIF)

S2 Fig. Expected virus dynamics under an antiviral treatment blocking viral replication.

The antiviral treatment was assumed to be initiated after 0.5 or 5 days (named early and late

initiations, respectively) from symptom onset with 99% and 50% inhibition rates (named high

and low antiviral effects, respectively) for patients with (A) medium, (B) rapid, and (C) slow

viral load decay. Left and right panels in each group show the viral loads, V(t), and the relative

fraction of uninfected target cells, f(t). The black and colored solid lines correspond to the

mean of the values without and with the therapies (red: high, blue: low antiviral effects),

respectively. The shadowed regions correspond to the 95% predictive intervals. The underlying

data for this figure can be found in S5 Data.

(TIF)

S3 Fig. Distribution of duration of virus shedding and cumulative viral load. (A) Duration

of virus shedding and (B) cumulative viral load of SARS-CoV-2 for different types of patients

(medium, rapid, and slow decay) with and without treatment. “Early initiation” and “Late ini-

tiation” mean the early and the late treatment initiation (0.5 or 5 days after symptom onset).

The dots and error bars represent the mean and the standard deviation. The underlying data

for this figure can be found in S3 Data. SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2.

(TIF)

S4 Fig. Cumulative viral load in the 3 different groups. (A) The relative density distribu-

tions of cumulative viral load for the 3 groups (light pink: medium decay group, light blue:

rapid decay group, and pink: slow decay group) without treatment obtained through
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simulation. (B) The relative density distributions of cumulative viral load (in log scale) for

the 3 groups under antiviral treatment with different inhibition rate and different timing of

treatment initiation. The left 3 panels are when antiviral treatment is initiated at 0.5 days

(“Early initiation”) since symptom onset. The red dotted line corresponds to the distribution

with 99% inhibition rate. The distribution without treatment is shown in the back for com-

parison. The right 3 panels are when antiviral treatment is initiated at 5 days (“Late initia-

tion”) since symptom onset. The distributions are represented as “relative density” to reflect

different proportions of the 3 groups. (C) The distributions of cumulative viral load for

patients without and with treatment are shown in black and red curves, respectively. The red

dotted curve is when all patients are included regardless of the timing of recruiting and treat-

ment initiation. The red dashed curve is the case for patients who were recruited and who

received treatment within 0.5 days since symptom onset only. (D) Means and standard devi-

ation of the cumulative viral load under different inclusion criteria (not treated, included

regardless of the timing of recruiting and treatment initiation, and early treatment initiation

[within 0.5, 1, 2, 3, and 4 days since symptom onset]) are shown. The underlying data for this

figure can be found in S3 and S4 Data.

(TIF)

S1 Table. Summary of clinical trials for antiviral drugs for SARS-CoV-2. Current major

clinical studies for antiviral treatment of SARS-CoV-2 (as of May 22, 2020) were investigated

and their information were summarized. SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2.

(DOCX)

S2 Table. Estimated parameters for each patient (mode and 95% credible intervals). The

conditional modes of the individual parameters for each patient were estimated as empirical

Bayes estimates and summarized. The patient type was based on the 3 groups identified by the

hierarchical clustering of the reconstructed daily viral load data.

(DOCX)

S3 Table. Description of variables, parameters, and estimated parameter values. The fixed

effect and the random effect for each parameter were estimated by the nonlinear mixed-effect

model. Estimated values with standard errors were summarized.

(DOCX)

S4 Table. Sample size (per group) under different inclusion criteria. Sample size was com-

puted for different outcomes (duration of virus shedding and cumulative viral load) under

assumed inhibition rate (95% or 99%) and inclusion criteria (0.5 days to 4 days). The underly-

ing data for this figure can be found in S4 Data.

(DOCX)

S1 Data. Original numerical values for Fig 1.

(XLSX)

S2 Data. Original numerical values for Fig 2.

(XLSX)

S3 Data. Original numerical values for Fig 4 and S4A and S4B and S3 Figs.

(XLSX)

S4 Data. Original numerical values for Fig 5, S4C and S4D Fig, and S4 Table.

(XLSX)
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S5 Data. Original numerical values for S2 Fig.

(XLSX)
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